The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis.
نویسندگان
چکیده
In order to examine the spatial organisation of stem cells and their progeny in human epidermis, we developed a method for whole-mount epidermal immunofluorescence labelling using high surface beta1 integrin expression as a stem cell marker. We confirmed that there are clusters of high beta1 integrin-expressing cells at the tips of the dermal papillae in epidermis from several body sites, whereas alpha6 integrin expression is more uniform. The majority of actively cycling cells detected by Ki67 or bromodeoxyuridine labelling were found in the beta1 integrin-dull, transit amplifying population and integrin-negative, keratin 10-positive cells left the basal layer exclusively from this compartment. When we examined p53-positive clones in sun-exposed epidermis, we found two types of clone that differed in size and position in a way that was consistent with the founder cell being a stem or transit amplifying cell. The patterning of the basal layer implies that transit amplifying cells migrate over the basement membrane away from the stem cell clusters. In support of this, isolated beta1 integrin-dull keratinocytes were more motile on type IV collagen than beta1 integrin-bright keratinocytes and EGFP-labelled stem cell clones in confluent cultured sheets were compact, whereas transit amplifying clones were dispersed. The combination of whole-mount labelling and lineage marking thus reveals features of epidermal organisation that were previously unrecognised.
منابع مشابه
Isolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets
Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...
متن کاملP-130: Piwil2 Reprograms Human Fibroblasts to Germ Cell Lineage
Background The piwi family genes are highly conserved during evolution and play a crucial role in stem cell self-renewal, gametogenesis, and RNA interference in diverse organisms ranging from Arabidopsis to humans. Piwil2, also known as Hili, is one of the four human homologues of piwi. Piwil2 was found in germ cells of adult testis, suggesting that this gene functions in spermatogonial stem ce...
متن کاملسلولهای بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری
Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...
متن کاملMultilineage Differentiation Activity by the Human Umbilical Vein-Derived Mesenchymal Stem Cells
Background: Mesenchymal stem cells (MSC) are a very promising transplantable stem cell source for a variety of cell replacement therapies. As the main source of MSC is bone marrow (BM), most of studies have been done on BM-derived MSC (BM-MSC). Umbilical cord (UC)-derived MSC (UC-MSC) which are recently introduced, is one of the good alternative source for these cells. The objective of this stu...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 11 شماره
صفحات -
تاریخ انتشار 1999